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Abstract: The RECONNECT project addresses the fragmentation of Ireland’s public healthcare systems, aiming

to enhance service planning and delivery for chronic disease management. By integrating complex systems

within the Health Service Executive (HSE), it prioritizes data privacy while supporting future digital resource

integration. The methodology encompasses structural integration through a Federated Database design to

maintain system autonomy and privacy, semantic integration using a Record Linkage module to facilitate

integration without individual identifiers, and the adoption of the HL7-FHIR framework for high interoperability

with the national electronic health record (EHR) and the Integrated Information Service (IIS). This innovative

approach features a unique architecture for loosely coupled systems and a robust privacy layer. A demonstration

system has been implemented to utilize synthetic data from the Hospital Inpatient Enquiry (HIPE), Chronic Disease

Management (CDM), Primary Care Reimbursement Service (PCRS) and Retina Screen systems for healthcare

queries. Overall, RECONNECT aims to provide timely and effective care, enhance clinical decision-making, and

empower policymakers with comprehensive population health insights.

Keywords: record linkage; Federated healthcare database; healthcare queries; demonstration system

1. Introduction

In Ireland, chronic diseases like diabetes and cardiovascular conditions place a significant strain
on the healthcare system, necessitating coordinated, long-term management. Integrated care models,
supported by digital health technologies and national programs, are essential for improving patient
outcomes, reducing hospitalizations, and managing healthcare costs effectively [7]. Ireland’s healthcare
system is under increasing pressure due to a growing and aging population, rising chronic diseases,
and evolving patient expectations. These factors have led to longer waiting lists and overcrowded
hospitals. The COVID-19 pandemic further highlighted vulnerabilities in infrastructure and staffing
although it also provided an opportunity for researchers from different communities to address issues
with dataset engineering [13]. Without intervention, vulnerable populations—such as the elderly and
those from lower socioeconomic backgrounds—risk poorer health outcomes. However, this challenge
presents an opportunity for transformation through digital technologies and data-driven approaches.
The Connecting Government 2030 Strategy promotes digitalization in healthcare, aiming to improve
access, enhance efficiency, and position Ireland as a leader in innovative health solutions.

The specific problem to be addressed is the fragmentation and isolation of data within the
Irish healthcare system. Currently, health data is scattered across multiple disconnected systems,
creating challenges for patients, clinicians, and policymakers. Patients navigating the healthcare
service must repeatedly report and recall their health information. Clinicians face difficulties accessing
a comprehensive view of a patient’s health, compounded by the burden of retrieving information
from various sources. For policymakers, making informed decisions about health service delivery is
challenging due to the lack of comprehensive information on the population.

Overall, this lack of data integration hampers timely and effective patient care, complicates
the delivery of integrated services, and restricts data-driven decision-making in both clinical and
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strategic contexts. This issue is further exacerbated by the growing pressures on the healthcare system.
Inefficient integration and utilization of healthcare data leads to several problems:

• Disconnected patient records negatively impact patients, clinicians, and population health plan-
ners. These gaps lead to suboptimal patient care, increased workloads for clinicians, and hinder
the effectiveness of health planners and policymakers.

• Inflexible systems struggle to identify and adapt to changing healthcare needs and priorities.
• Manual data processing is not only resource-intensive but also susceptible to errors, further

straining an already overwhelmed system.

To address these challenges, the proposed solution will focus on creating a comprehensive
healthcare data integration infrastructure, which includes:

• Structural Integration: A federated database design that preserves the autonomy of existing
systems while facilitating varying levels of privacy and access.

• Semantic Integration: A record linkage module that complies with data governance policies,
allowing for integration even without a universal identifier. This approach can be applied to
systems such as HIPE, CDM, PCRS, and RetinaScreen.

• Adoption of Standards: A new framework based on the Fast Healthcare Interoperability Resources
(HL7-FHIR) model [4], ensuring high levels of interoperability within integrated FHIR data,
regardless of the participating healthcare systems.

The remainder of this paper is structured as follows. In Section §2, we outline the four-layer
architecture used in creating digital healthcare assets. Section §3 details the generation of healthcare
assets, including our integration strategy used with examples. Finally, in Section §4, we present our
conclusions.

2. Methodology

In this section, we outline the RECONNECT methodology for creating digital healthcare as-
sets, specifically datasets based on either CSV or FHIR formats. Our approach utilizes a four-layer
federated architecture that encompasses data at various levels of structure and representation. As
illustrated in Figure 1, a federated architecture [14] operates under the premise that systems are loosely
coupled—meaning they do not need to communicate directly with one another—and are read-only,
indicating that the RECONNECT architecture cannot write to the systems residing at the Local Schema
Layer. This architecture offers a degree of autonomy that, among other benefits, supports a high level
of privacy and complies with stringent governance procedures within organizations [6].

Figure 1. RECONNECT Architecture: Creation and Manipulation of Novel Digital Healthcare Assets.
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2.1. Local Schema Layer

The Local Schema layer contains all source systems which may be entirely heterogeneous contain-
ing systems based on relational databases, hierarchical databases, Web (HTML or XML) sources or
proprietary data. This autonomy of source information systems is preserved in a federated database
architecture which is a crucial feature of RECONNECT: no participating system requires modification
nor is required to facilitate updates from with the RECONNECT system.

The Reconnect Local Schema layer replicates four distinct datasets within the HSE that are specific
to a particular chronic disease: Type 2 Diabetes. Currently, these systems are fragmented, preventing
any digital interoperability. The datasets are as follows:

1. HIPE: Hospital In-Patient Enquiry
2. CDM: Chronic Disease Management
3. PCRS: Primary Care Reimbursement Service
4. Retina Screen

HIPE: The HIPE system maintains the national database of hospital discharge activity, serving
the data needs of various stakeholders, including policymakers, clinical teams, and researchers. It is
the primary source of national data on hospital discharges, encompassing all acute public hospitals,
though private hospitals are excluded from the database. HIPE collects demographic, clinical, and
administrative information on discharges and deaths in public hospitals across the country. This
dataset also feeds into national files that are used for activity-based funding.

The synthetic dataset is derived from HIPE metadata and represents a scaled-down version of
records for the entire population of Ireland. It replicates the statistical properties and patterns of
real-world healthcare data without containing any actual identifiable personal information. Each
patient is identified by an MRN number, which is encrypted in the national file. The dataset includes
limited personal details, as well as information on diagnoses, treatments, and the doctors assigned to
each patient discharged from the hospital. Synthetic data has shown to offer significiant advantages
when prototyping these types of applications [3], [8] in advance of the receipt of actual healthcare
datasets.

CDM: The program is designed for individuals aged 18 and above with specific chronic conditions
such as type 2 diabetes, asthma, COPD, and cardiovascular diseases. It includes regular reviews,
personalized care plans, medication assessments, support for condition management, early detection
of new conditions and complications, and community-based care. The synthetic data is generated
based on the structure and guidelines of the CDM treatment program.

PCRS: It is a division of the HSE responsible for reimbursing healthcare professionals for services
rendered to the public. PCRS manages payments for high-tech drugs, reimburses hospitals for medi-
cations, and oversees the assessment of Medical Card and GP Visit Card applications. Additionally,
PCRS compiles statistics and conducts trend analyses for stakeholders, aiding in policy development
and strategic decision-making.

Retina Screen: This program provides national diabetic retinopathy screening for individuals
aged 12 and above with diabetes. The primary goal of the database is to identify diabetes cases by
HSE area, initially to support Retina Screen program, with potential expansion to other aspects of
diabetes care. Retina Screen is a population-based database designed to identify and collect data on
instances of Type 2 diabetes within a specified population. However, it does not capture all cases of
Type 2 diabetes.

A separate PII database is used to store all personally identifiable information (PII). Access to this
data is controlled through a role-based security layer, and while the PII dataset is currently used for
data integration, it remains separate from the main screening dataset..

2.2. FHIR Schema Layer

While systems may have heterogeneous data models at the Local Schema Layer, all datasets
which have been extracted form the underlying systems must have a common data representation [1].
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Thus, at this stage, data will be extracted from source systems and transformed into the RECONNECT
common data model (HL7-FHIR). Additionally, systems will be interconnected using established
integration techniques. FHIR has the latest HL7 [11] healthcare standard and has been used in similar
projects [5], [15] to varying degrees of success. Similarly graph-based common models such as those
used in [10] have been shown to have benefits over the more traditional relational model which is often
used in these types of architectures. The adoption of HL7-FHIR offers a high degree of extensibility to
the solution presented here.

Mapping Metadata: The purpose of the FHIR mapper is to ensure consistent interpretation of
data across systems which is challenging due to variations in coding systems and clinical terminologies.
Each data source contains various attributes across different categories. For this, we build upon earlier
work on metadata mapping from multiple sources ?? as it plays a crucial role in connecting source
datasets with their roles in systems such as RECONNECT. In FHIR, these categories correspond to
distinct resources. Different attribute sets within a data source are mapped to different FHIR resources.
Transforming a data source into a FHIR subgraph is achieved using a resource map and a namespace
linker.

This study includes four potential mapping types:

1. ONE_TO_ONE mappings: Applied when there is a direct correspondence between source and
FHIR properties, allowing the attribute value from the data source to be directly imported.

2. MANY_TO_ONE mappings: Used when multiple source attributes are needed to populate a
single FHIR property.

3. INDIRECT mappings: Utilized to provide default values for FHIR resources that are absent in the
source data.

4. LOOKUP mappings: Indicate attributes that require record linkage to populate the corresponding
FHIR property.

Record Linkage: This step will provide a holistic patient record by linking the databases. Record
linkage [9], a well-known challenge in data integration, is often simple when databases share common
identifiers. However, healthcare systems rarely align in terms of structure or identifiers, making it
difficult to accurately identify patients and achieve proper integration. In this project, the healthcare
systems lacked a single unique identifier, contained unrecognizable or missing identifiers, and recorded
patient data inconsistently.

Record linkage typically relies on probabilistic, inexact attribute matching between systems
(e.g., name, date of birth and contact details), but these attributes are not available here due to
privacy concerns [2]. Previous research has tackled this issue, even within healthcare. In the current
architecture, only researchers working with synthetic data can perform record linkage, as shown in
Figure 1. They create a Patient Meta-Record, which links unique identifiers from the evaluated systems.
This anonymized Meta-Record facilitates data integration from systems assessed for linkage. This
approach will address the gap caused by the lack of an Individual Health Identifier (IHI).

2.3. Global Schema Layer

The concept is to create a new (distributed) digital asset for each user requirement. These assets
may be shared and reused across multiple requirements (with appropriate governance) or utilized
for a single case study. They remain in the system as pre-computed queries until the user chooses to
delete them and can be updated as needed. The assets we create and populate are referred to as Digital
Health Records (DHRs).

A global schema provides a standardized digital data asset for capturing and presenting patient
information or offering an overview of the prevalence of chronic diseases and associated risk factors
across various demographics, age groups, and genders. This helps identify patients with similar risk
factors and predict the likelihood of chronic disease development in individuals. Section 3.1 outlines
how this new system can be adapted to generate multiple distributed digital assets based on different
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user requirements. These digital assets can be shared among multiple users, with access determined
by the level of permissions granted.

Digital health records are invaluable resources for both health research and clinical decision-
making. They provide a comprehensive view of patient history, treatments, and outcomes, which can
be used to enhance patient care and support public health initiatives.

Figures 2 and 3 illustrate interactions with the system, where users select a number from the
provided list and input the relevant “where” clause to obtain results. This process generates the
expected output for case 1, with the digital health record dynamically populated in the global schema
layer using data from the HIPE, CDM, PCRS, and RetinaScreen systems. Similar results can be achieved
by selecting other functions and entering a corresponding “where” clause, as demonstrated in the
samples provided in Section 3.1

Comprehensive interoperability can be realized by integrating national systems to improve
patient care, ensure regulatory compliance, enhance operational efficiency, extend the reach of national
prevention programs, and optimize cost management within healthcare organizations.

Figure 2. System interaction with a single parameter.
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Figure 3. System interaction with multiple parameters.

2.4. Query Processing Layer

There are 3 “case studies” in the illustration: blue (pulling from 3 sources); brown (pulling from 4
sources); green (2 sources).

1. Uptake of Retina Screen among People with Diabetes. This case study refers to the percentage of
people not participating in the prevention services led by the government but ending up in the
hospital. Datasets used:

(a) Retinascreen
(b) CDM
(c) HIPE

Diabetic retinopathy (DR) is the leading cause of preventable blindness. The independent risk
factors for DR included diabetes duration, haemoglobin A1c, serum glucose, systolic blood
pressure, and duration of diabetes. After 5 years, approximately 25% of type 1 diabetes patients
will have retinopathy. After 10 years, almost 60% will have retinopathy, and after 15 years, 80%
will have retinopathy. International guidelines for diabetic retinopathy (DR) screening, released
by the International Council of Ophthalmology (ICO), specify that adequate DR screening should
encompass a visual acuity test and a retinal examination.

This case study aims to pull data from Retinascreen, CDM and HIPE databases. The data
governance layer specifies the level of detail accessible by the system operator.

2. Blood Pressure Control among People with Diabetes

Datasets:
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(a) PCRS
(b) CDM
(c) HIPE

Randomized controlled trials have shown that lowering systolic blood pressure (SBP) to less
than 140 mmHg and diastolic blood pressure (DBP) to less than 90 mmHg benefits people with
diabetes. If SBP is 140 mmHg or more and/or DBP is 90 mmHg or more, drug therapy is
necessary, preferably starting with a combination therapy. The use of renin-angiotensin system
(RAS) inhibitors is strongly supported, especially in patients with evidence of end-organ damage.
Controlling blood pressure often requires multiple drug therapies, and a combination of two or
more drugs at fixed doses in a single pill should be considered to improve adherence and achieve
earlier control of blood pressure.

3. Amputations among People with Diabetes

Datasets:

(a) CDM
(b) HIPE

Diabetes can lead to foot or leg amputation, with a limb amputated every 20 seconds globally
due to diabetes. 85% of these amputations are preceded by a foot ulcer. The HSE introduced the
National Diabetes Footcare program in 2010, recommending annual foot screenings for people
with diabetes to assess their risk of lower extremity amputation. Those at risk should be referred
to foot protection services in the community or hospital setting.

3. Generating Healthcare Assets

The healthcare assets represent a subset of the primary integrated datasets, specifically designed
to meet the needs of the system’s end-users. These assets are tailored to serve both individual users,
such as clinicians, and larger teams like the health intelligence unit. By providing read-only access,
they effectively prevent accidental data modifications. Built on integrated data, they enable faster and
more efficient workflows. Access to these assets is controlled through role-based security to ensure
that only authorized users can retrieve the data.

These healthcare assets are sourced from existing datasets, using dynamic queries that add an
extra layer of data security. Depending on the use case and access permissions, end-users can retrieve
integrated data, including Personally Identifiable Information (PII). Various healthcare assets are
available for analysis, focusing on specific conditions of national and local interest, such as Type 2
diabetes and related conditions like hypertension, retinopathy, and amputations.

The Individual Health Identifier (IHI) is crucial to the data integration process, enabling the
identification of individual patients within the dataset. The IHI National Register has been established
with 4,775,629 records sourced from a recognized data reservoir. Each record in this repository is
assigned a unique IHI number, formally initiating the IHI National Register. In cases where IHI
is unavailable, a separate key is generated using fuzzy matching techniques, based on attributes
identified across different systems.

Different Healthcare assets developed include:

1. Integrating HIPE, CDM, PCRS, and Retinascreen systems for an Individual: This asset involves
the comprehensive integration of health data from HIPE, CDM, PCRS, and RetinaScreen for
individual patients. The goal is to provide a holistic view of a patient’s health status and enhance
care coordination, as shown in Figure 4.

2. Uptake of Retina Screen among People with Diabetes: Since retinopathy affects individuals with
both Type 1 and Type 2 diabetes, this dataset tracks the number of people who have undergone
RetinaScreen based on their type of diabetes. Understanding these numbers can help identify
gaps in care and improve screening practices.
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3. Uptake of Retina Screen among People on Type of Diabetes: Since retinopathy affects individuals
with both Type 1 and Type 2 diabetes, this dataset tracks the number of people who have
undergone RetinaScreen, categorized by their type of diabetes. Analyzing these numbers can
help identify gaps in care and improve screening practices.

4. Multimorbidity (Prevalence of More Than One Chronic Disease): This dataset focuses on the
prevalence and management of individuals with multiple chronic diseases, also known as multi-
morbidity. It highlights the need for comprehensive care strategies to address the complexities
of managing multiple health conditions simultaneously. The CDM system tracks individuals
diagnosed with Type 2 diabetes, asthma, chronic obstructive pulmonary disease (COPD), and
cardiovascular diseases, including stable heart failure, ischaemic heart disease, cerebrovascular
disease (stroke/TIA), and atrial fibrillation. This dataset helps identify subsets of individuals
with similar underlying risk factors.

5. Diabetes, Medication, and Physical Activity: This dataset explores the relationship between
diabetes management, medication usage, and the role of physical activity. It emphasizes the
impact of lifestyle changes, particularly exercise, on medication requirements and overall diabetes
control. Engaging in physical activity fewer than three times per week is identified as a risk factor
for developing chronic diseases.

6. Age, Physical Activity, and Hospital Admission due to Chronic Disease: This dataset explores
the correlation between a patient’s age, level of physical activity, and the frequency of hospital
admissions related to chronic diseases. It emphasizes the importance of promoting physical
activity, particularly among older adults, to reduce hospitalizations.

7. Blood Pressure Control among People with Diabetes: This dataset focuses on the critical need to
manage blood pressure in individuals with diabetes. Drug therapy is recommended for those
with diastolic blood pressure above 90 and systolic blood pressure above 140. Proper blood
pressure control is essential for preventing complications such as stroke, coronary events, and
kidney disease.

8. Cardiovascular Disease among People with Diabetes: This dataset identifies diabetes patients
who are at an increased risk of developing cardiovascular disease. It highlights the importance of
regular screenings and preventive measures to mitigate this risk.

9. Hospital Admissions among People with Diabetes: This dataset compiles data from patients
registered in both the CDM and HIPE systems, focusing on the number of hospital admissions
for individuals diagnosed with Type 2 diabetes. Its goal is to identify patterns and causes of
hospitalizations, improving diabetes management and reducing healthcare costs.

10. Amputations among People with Diabetes: This dataset tracks the incidence of amputations in
individuals with diabetes, often resulting from complications like neuropathy, poor circulation,
and other risk factors. It highlights the importance of preventive care, such as regular foot
screenings and early interventions, to reduce diabetes-related amputations.

11. Identifying Patients in a Demographic Location Based on Gender: This dataset categorizes patients
within specific demographic locations by gender. The data can be used to tailor healthcare services
and design targeted outreach programs.

12. Identifying Patients in a Demographic Location Based on Age: This dataset focuses on identifying
patients within specific demographic locations, categorized by age. Understanding the age
distribution allows healthcare providers to address the specific needs of different age groups
more effectively. Individuals aged 45 and older are more prone to developing chronic diseases
and other risk factors.

13. Medications for People with Both Diabetes and Hypertension: This dataset examines the various
medications prescribed to individuals managing both diabetes and hypertension. It underscores
the importance of addressing both conditions concurrently to reduce health risks. This data also
aids clinicians in developing better care models for these patients

14. Identify Patient Subgroups with Shared Conditions: This dataset identifies subgroups of patients
with similar health conditions, enabling healthcare providers to develop targeted interventions.
Such insights can improve the effectiveness of treatment plans and enhance patient outcomes.
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Figure 4. High-Level example of how Diabetic patients who missed their Retinopathy appointment are
identified.

3.1. Technical Methodology

In this section, we provide some detail on the integration strategy adopted for the construction of
the healthcare assets described previously.

The dynamic_case_procedure is a PostgreSQL stored procedure for dynamic data retrieval. It
allows users to retrieve specific health-related data from the local schema layer, based on a given
condition_type and an identification parameter. The procedure creates a temporary table named
result_value to store the results returned by the called functions. It calls various functions based on the
value of condition_type.

Explanation for Dynamic procedure.

1. Parameters:

condition_type: Used to determine which query to run based on the provided value.

identification: An identifier (could be MRN, ID, mobile, etc.) to be used in the SQL queries.
2. Dynamic Table Creation: The procedure dynamically creates a table named result_value based on

the type of data being fetched, which is determined by the condition_type provided.
3. CASE Structure: Depending on the value of condition_type, a corresponding query is executed.

Each case uses a specific function (e.g., hipe_data, cdm_data, etc.) to retrieve data from various
tables.

4. ELSE Clause: If none of the provided conditions match, the procedure raises a notice saying
“Check selected function”

This procedure is designed to dynamically generate queries and create tables based on the input
condition_type and identification.

The procedure calls a function internally. Each function is designed to retrieve patient-specific
health records by combining data from multiple tables using dynamic SQL. In the case where no
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matching condition_type is found, the procedure raises a notice indicating that no matching record was
found. This provides feedback to the user or calls the application without terminating the procedure
abruptly. The procedure can be called running a Python script and providing the related parameters.
Each function is based on the following:

1. Parameters: The function accepts several parameters, including the table names (TABLE1, TA-
BLE2, TABLE3, TABLE4, TABLE5, TABLE6) and filtering conditions (WHERECLAUSE1, WHERE-
CLAUSE2, WHERECLAUSE3).

2. Dynamic SQL Query: The query variable is constructed using the format function, which dynami-
cally inserts table names and WHERE conditions into the SQL statement.

3. Joins: It performs several JOIN operations between the tables to gather patient data like MRN,
IHI, contact details, diagnosis, andor screening details.

4. WHERE Clause: The query filters data based on screening date, diagnosis, and chronic diseases.
5. Execution: The dynamically generated query is executed, and the result set is returned using

RETURN QUERY EXECUTE query.

Procedure Calls and Functionality.
The procedure performs the following actions based on the condition_type and displays results

in a dynamically created result table. Sample query follows every case. The following queries contain
the condition_type used:

1. F1_mrn: Example 1 retrieves data based on the mrn (medical record number) using the hipe_data
function. This function integrates all the systems in the local schema and provides details
regarding each individual patient from all systems.

call dynamic_case_procedure(’F1_mrn’,’10164260’);
select * from result_value;

Sample Query 1.

2. F1_id: Example 2 retrieves data based on the Individual Health Identifiers using the cdm_data
function. This function integrates CDM, PCRS and RetinaScreen systems from the local schema
and provides details regarding an individual from all systems.

call dynamic_case_procedure(’F1_id’,’10043’);
select * from result_value;

Sample Query 2.

3. F1_mobile: Example 3 retrieves data based on the mobile number using the rs_data function. It
provides a similar functionality as the previous function however the mobile number uniquely
identifies the patient.

call dynamic_case_procedure(’F1_mobile’,’8382643256’);
select * from result_value;

Sample Query 3.

4. F2_eir: Example 4 retrieves patient data based on the EIR code using the eir_data function. The
first three characters of the Eircode that identify the area are stored in the database.
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call dynamic_case_procedure(’F2_eir’,’F52’);
select * from result_value;

Sample Query 4.

5. F3_eir_age_data: Example 5 retrieves data for patients filtered on both age and Eircode using
the eir_age function. It takes a minimum age and the first three characters of an Eircode as
parameters and retrieves patient details such as name, sex, address, age, and Eircode. This
function is designed to retrieve data for up to 3 Eircodes in a single query.

call dynamic_case_procedure(’F3_eir_above45_data’,’F52’);
select * from result_value;

Sample Query 5.

6. F3_eirdesc_age_data: Example 6 retrieves data for patients filtered on both age and Eircode
description using the eirdesc_age_data function. It takes a minimum age and the area name as
parameters and retrieves patient details such as name, sex, address, age, and Eircode description.
This function is designed to retrieve data for up to 3 Area names in a single query.

call dynamic_case_procedure(’F3_eirdesc_above45_data’,’Boyle’);
select * from result_value;

Sample Query 6.

7. F4_rs_uptake: Example 7 retrieves data related to patients who choose not to enrol in the Retinopa-
thy programme for the prevention of Retinopathy but were admitted to the hospital and diagnosed
with Retinopathy.

call dynamic_case_procedure(’F4_rs_uptake’,’Type 2 diabetes’);
select * from result_value;

Sample Query 7.

8. F5_rs_diab_type: Example 8 retrieves data related to the patient suffering from diabetes but a
distinction on the type of diabetes is made using the rs_diab_type function.

call dynamic_case_procedure(’F5_rs_diab_type’,’1’);
select * from result_value;

Sample Query 8.

9. F5_Hospital_diabetes: Example 9 retrieves data based on hospitalization due to any condition
and type of diabetes.

call dynamic_case_procedure(’F5_rs_diab_type’,’2’);
select * from result_value;

Sample Query 9.
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10. F6_Hypertension: Example 10 retrieves data related to patients who are diagnosed with both
diabetes and hypertension using the diab_hyp function.

call dynamic_case_procedure(’F6_Hypertension’,’Type 2 diabetes’);
select * from result_value;

Sample Query 10.

11. F7_diab_risk: Example 11 retrieves data related to diabetes risk factors like physical activity, age,
chronic diseases or any other risk factors using the diab_risk function. Other risk factors that have
been included are: overweight or obesity, age 45 or older, parent or sibling with type 2 diabetes,
being physically active less than 3 times a week, have non-alcoholic fatty liver disease (NAFLD).

call dynamic_case_procedure(’F7_diab_risk’, ’sibling with type 2 diabetes,
non-alcholic fatty liver disease,
parent with type 2 diabetes, ethnicity, overweight’);

select * from result_value;

Sample Query 11.

12. F8_cvd: Example 12 retrieves data related to diabetic patients who are also diagnosed with one
or more cardiovascular diseases using the diab_cvd function. Different Cardiovascular diseases
mentioned in the CDM booklet are Stable Heart Failure, Ischaemic Heart Disease, Cerebrovascular
Disease (Stroke / TIA) and/or Atrial Fibrillation.

call dynamic_case_procedure(’F7_diab_risk’, ’sibling with type 2 diabetes, ethnicity’);
select * from result_value;

Sample Query 12.

13. F9_all_amp: Example 13 retrieves data related to diabetic amputations using the amputation
function.

call dynamic_case_procedure(’F8_cvd’, ’Atrial fibrillation,Ischaemic Heart Disease,
Stroke,Stable Heart Failure’);

select * from result_value;

Sample Query 13.

14. F9_hipe_amp: Example 14 retrieves data related to diabetic patients who have had amputations
and are registered in the hospital system using the amputation_hipe function.

call dynamic_case_procedure(’F8_cvd’, ’Stable Heart Failure’);
select * from result_value;

Sample Query 14.

15. F10_system_gender: Example 15 retrieves data based on gender (used as an identifier here) using
the gender_data function.
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call dynamic_case_procedure(’F9_all_amp’, ’Foot Ulceration’);
select * from result_value;

Sample Query 15.

16. F11_gender_eir: Example 16 retrieves gender-related data based on Eircode using the gen-
der_eir_data function.

call dynamic_case_procedure(’F9_hipe_amp’, ’Foot Ulceration’);
select * from result_value;

Sample Query 16.

17. F12_medication: Example 17 retrieves data regarding the diabetic and hypertension patients’
medication data using the diab_hyp_med function to understand treatment provided in different
parts of the country.

call dynamic_case_procedure(’F10_system_gender’, ’F’);
select * from result_value;

Sample Query 17.

18. F13_activity: Example 18 retrieves activity-related data using the diab_hyp_act function. The data
can be retrieved using different chronic diseases, gender and physical activity frequency.

call dynamic_case_procedure(’F11_gender_eir’, ’F,F93’);
select * from result_value;

Sample Query 18.

4. Conclusions

In this paper, we proposed a method for integrating chronic disease systems to address short-
comings in existing healthcare systems. The RECONNECT system features a generic architecture
comprising a Record Linkage component, tailored for environments with loosely coupled information
systems. This enhances integration by enabling seamless connections between disparate data sources.
Unlike traditional systems, RECONNECT adheres to the global HL7-FHIR standard, improving in-
teroperability and aligning with international best practices. Additionally, it efficiently reuses digital
assets, enhancing healthcare delivery. Privacy and data security are prioritized, with a dedicated
privacy layer safeguarding patient information. A prototype using synthetic data demonstrates its
capabilities and potential impact. In many circumstances where healthcare solutions are being devel-
oped, real patient data in not available to developers. Thus, we generated synthetic Irish health chronic
disease datasets based on the metadata from HIPE, CDM, PCRS, and Restina in to use in our validation
studies. As part of this validation, 14 new healthcare assets were created to illustrate how clinicians,
strategists and policy makers can benefit from the deployment of the RECONNECT prototype.
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